본문 바로가기
반응형

멀티에이전트2

LangGraph 멀티에이전트 워크플로 구축: 설계·패턴·RAG·운영까지 (완전 가이드) LangGraph 멀티에이전트 워크플로 구축: 설계·패턴·RAG·운영까지 (완전 가이드)LangGraph 멀티에이전트를 활용해 검색·요약·플래닝·검증을 분업화하고, 장애·비용·지연까지 관리하는 프로덕션 워크플로를 단계별로 정리했습니다. 실전 코드, 합의/토너먼트 패턴, RAG 결합, 관찰성·보안·배포 팁까지 한 글에 담았습니다. LangGraph 멀티에이전트로 계획-실행-관찰 루프를 구현하는 방법을 소개합니다. 노드/에지로 구성한 그래프, 상태 관리, 에러 분기, 합의·토너먼트 패턴, RAG·리랭킹 결합, 로그/메트릭·비용 최적화와 배포 전략을 실전 코드와 함께 다룹니다. 목차 1. 왜 LangGraph 멀티에이전트인가 2. 핵심 개념: 그래프·상태·전이 3. 실전 구축: 단일→멀티에이전트로 확장 4.. 2025. 8. 30.
AI 에이전트 실전 구축 가이드: 2025 워크플로우·도구·운영 전략 AI 에이전트 실전 구축 가이드: 2025 워크플로우·도구·운영 전략AI 에이전트는 2025년 현재 가장 뜨거운 기술 키워드 중 하나입니다. 이 글은 AI 에이전트의 개념부터 설계 원칙, 데이터·도구·메모리 설계, 멀티에이전트 오케스트레이션, 평가와 운영까지 현업에서 바로 쓰는 실전 가이드를 목표로 합니다. 검색 트렌드와 실제 적용 사례를 바탕으로, 프로덕트 팀이 일·주 단위로 PoC를 완성하고 프로덕션에 안착시키는 로드맵을 제공합니다. AI 에이전트는 대화형 LLM을 넘어 계획·실행·관찰 루프로 실제 업무를 수행합니다. 본 글은 1) 요구사항 분석과 위험 모델링, 2) RAG+툴 조합 설계, 3) 메모리/상태 관리, 4) 멀티에이전트 패턴, 5) 안전장치·거버넌스, 6) 오프라인·온라인 평가 지표, 7.. 2025. 8. 26.
반응형